Nucleotide variation in the tinman and bagpipe homeobox genes of Drosophila melanogaster.

نویسندگان

  • Evgeniy S Balakirev
  • Francisco J Ayala
چکیده

The tinman (tin) and bagpipe (bap) genes are members of the NK homeobox gene family of Drosophila, so that tin occupies a higher position than bap in the regulatory hierarchy. Little is known about the level and pattern of genetic polymorphism in homeobox genes. We have analyzed nucleotide polymorphism in 27 strains of Drosophila melanogaster and one each of D. simulans and D. sechellia, within two closely linked regions encompassing a partial sequence of tin and the complete sequence of bap. The two genes exhibit different levels and patterns of nucleotide diversity. Two sets of sharply divergent sequence types are detected for tin. The haplotype structure of bap is more complex: about half of the sequences are identical (or virtually so), while the rest are fairly heterogeneous. The level of silent nucleotide variability is 0.0063 for tin but significantly higher, 0.0141, for bap, a level of polymorphism comparable to the most polymorphic structural genes of D. melanogaster. Recombination rate and gene conversion are also higher for bap than for tin. There is strong linkage disequilibrium, with the highest values in the introns of both genes and exon II of bap. The patterns of polymorphism in tin and bap are not compatible with an equilibrium model of selective neutrality. We suggest that negative selection and demographic history are the major factors shaping the pattern of nucleotide polymorphism in the tin and bap genes; moreover, there are clear indications of positive selection in the bap gene.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Differential rescue of visceral and cardiac defects in Drosophila by vertebrate tinman-related genes.

tinman, a mesodermal NK2-type homeobox gene, is absolutely required for the subdivision of the early Drosophila mesoderm and for the formation of the heart as well as the visceral muscle primordia. Several vertebrate relatives of tinman, many of which are predominately expressed in the very early cardiac progenitors (and pharyngeal endoderm), also seem to promote heart development. Here, we sho...

متن کامل

bagpipe-dependent expression of vimar, a novel Armadillo-repeats gene, in Drosophila visceral mesoderm

Two homeobox-containing genes, tinman and bagpipe, play important roles during the specification of the midgut visceral musculature from the mesoderm during Drosophila embryogenesis. Expression of tinman in the dorsal mesoderm activates the expression of the bagpipe gene in segmental subsets of those cells, which then become determined to form the midgut visceral mesoderm. Understanding how the...

متن کامل

Complex Interplay of Evolutionary Forces in the ladybird Homeobox Genes of Drosophila melanogaster

Tandemly arranged paralogous genes lbe and lbl are members of the Drosophila NK homeobox family. We analyzed population samples of Drosophila melanogaster from Africa, Europe, North and South America, and single strains of D. sechellia, D. simulans, and D. yakuba within two linked regions encompassing partial sequences of lbe and lbl. The evolution of lbe and lbl is highly constrained due to th...

متن کامل

D-mef2 is a target for Tinman activation during Drosophila heart development.

The NK-type homeobox gene tinman and the MADS box gene D-mef2 encode transcription factors required for the development and differentiation of the Drosophila heart, and closely related genes regulate cardiogenesis in vertebrates. Genetic analyses indicate that tinman and D-mef2 act at early and late steps, respectively, in the cardiogenic lineage. However, it is unknown whether regulatory inter...

متن کامل

A distinct class of homeodomain proteins is encoded by two sequentially expressed Drosophila genes from the 93D/E cluster.

Homeodomains appear to be one of the most frequently employed DNA-binding domains in a superfamily of transacting factors. It is likely that during evolution several sub-types of homeodomain have evolved from a common ancestral domain, resulting in distinct but closely related DNA-binding preferences. Here we describe the conservation of a distinct type of homeodomain encoded by the Drosophila ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 166 4  شماره 

صفحات  -

تاریخ انتشار 2004